

ALUMINCO S.A. TEST REPORT

SCOPE OF WORK

STRUCTURAL PEFORMANCE TESTING ON THE SYNTHESES TYPE B1, ALUMINUM AND GLASS GUARDRAIL SYSTEM

REPORT NUMBER

13376.01-119-19 RO

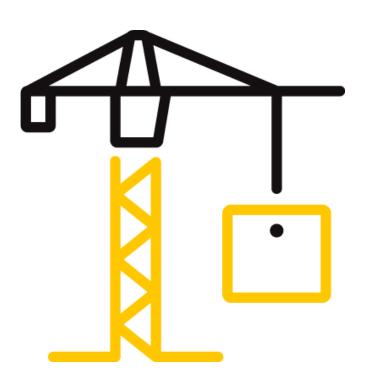
TEST DATE(S)

05/15/18 - 05/16/18

ISSUE DATE

06/26/18

RECORD RETENTION END DATE


05/16/22

PAGES

15

DOCUMENT CONTROL NUMBER

RT-R-AMER-Test-2846 (02/09/18) © 2017 INTERTEK

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

REPORT ISSUED TO

ALUMINCO S.A. ENGINEERING DIVISION

Inofita Viotia, 32011 Greece

SECTION 1

SCOPE

Intertek Building & Construction (B&C) was contracted by Aluminco S.A., Greece to perform structural performance testing in accordance with the 2018 IBC on their 46 in wide (nominal) by 47 in high (nominal) *Synthesis Type B1* aluminum and glass guardrail system. All tests performed were to evaluate structural performance of the guardrail assembly to carry and transfer imposed loads to the supporting structure. The test specimens evaluated included the infill, rails, rail brackets, and support posts. Anchorage of support posts to the supporting structure is not included in the scope of this testing and would need to be evaluated separately.

Results obtained are tested values and were secured by using the designated test method(s). Testing was conducted at Intertek B&C's test facility in York, Pennsylvania. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory.

SECTION 2

SUMMARY OF TEST RESULTS

The specimen met the 2018 IBC design load performance requirements.

For INTERTEK B&C:

COMPLETED BY:
TITLE:
Project Manager

SIGNATURE:
DATE:
06/26/18

ECR/vtm:aaa

TITLE:

V. Thomas Mickley, Jr., P.E.
Senior Staff Engineer

SIGNATURE:

06/26/18

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample(s) tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

DATE:

Version: 02/09/18 Page 2 of 15 RT-R-AMER-Test-2846

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

SECTION 3

TEST METHOD(S)

The specimen was evaluated in accordance with the following:

2018, International Building Code®, International Code Council

2018, International Residential Code®, International Code Council

Structural tests were performed according to Chapter 17 (Structural Tests and Special Inspections) of IBC 2018.

Limitations

All tests performed were to evaluate structural performance of the guardrail assembly to carry and transfer imposed loads to the supporting structure. The specimen was evaluated in accordance with the 2018 IBC performance requirements. The test specimens evaluated included the rails and their connection to the support posts, the glass panels and the support posts. Anchorage of the support posts to the supporting structure is not included in the scope of this testing and would need to be evaluated separately.

SECTION 4

MATERIAL SOURCE/INSTALLATION

Test samples were provided by the client. Representative samples of the test specimen(s) will be retained by Intertek B&C for a minimum of four years from the test completion date.

The 46 in wide (nominal) by 47 in high (nominal) guardrail assembly was installed and tested as a single railing section by directly securing the posts onto the surface of rigid steel channels (to simulated anchorage into concrete), which allowed the posts to rotate under load. Transducers mounted to an independent reference frame were located to record movement of reference points on the guardrail system components (ends and mid-point) to determine net component deflections. See photographs in Section 11 for individual test setups.

SECTION 5

EQUIPMENT

The guardrail was tested in a self-contained structural frame designed to accommodate anchorage of the guardrail assembly and application of the required test loads. The specimens were loaded using an electric winch mounted to a rigid steel test frame. High strength steel cables, nylon straps, and load distribution beams were used to impose test loads on the specimens. Applied load was measured using an electronic load cell located in-line with the loading system. Electronic linear motion transducers were used to measure deflections.

Version: 02/09/18 Page 3 of 15 RT-R-AMER-Test-2846

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

SECTION 6

LIST OF OFFICIAL OBSERVERS

NAME	COMPANY
Alva R. Baker	Intertek B&C
Emily C. Riley	Intertek B&C

SECTION 7

TEST PROCEDURE

The test specimen was inspected prior to testing to verify size and general condition of the materials, assembly, and installation. No potentially compromising defects were observed prior to testing.

An initial load, not exceeding 50% of design load, was applied and transducers were zeroed. Load was then applied at a steady uniform rate until reaching 2.0 times design load in no less than 10 seconds. After reaching 2.0 times design load, the load was released. After allowing a minimum period of one minute for stabilization, load was reapplied to the initial load level used at the start of the loading procedure, and deflections were recorded and used to analyze recovery. Load was then increased at a steady uniform rate until reaching 2.5 times design load (loads on aluminium components) / 4.0 times design load (loads on glass components) or until failure occurred. The testing time was continually recorded from the application of initial test load until the ultimate test load was reached.

Deflection and permanent set were component deflections relative to their end-points; they were not overall system displacements. All loads and displacement measurements were horizontal, unless noted otherwise.

Key to Test Results Tables:

Load Level: Target test load

Test Load: Actual applied load at the designated load level (target).

<u>Elapsed Time (E.T.)</u>: The amount of time into the test with zero established at the beginning of the loading procedure.

Version: 02/09/18 Page 4 of 15 RT-R-AMER-Test-2846

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

SECTION 8

TEST SPECIMEN DESCRIPTION

Aluminco S.A. provided the fully-assembled test specimens with the following details:

PRODUCT	Synthesis Type B1			
ТҮРЕ	Aluminum and glass guardrail system			
MATERIAL	Unspecified aluminum alloy			
OVERALL DIMENSIONS	45-7/16 in wide (inside of post to inside of post)			
	47 in (center of post to center of post)			
	47-1/4 in high (bottom of base plate to top of top rail)			
TOP RAIL	11/16 in high by 2-15/16 in wide contoured aluminum extrusion			
	with 0.09 in wall and a 1-1/8 in high by 3-1/8 in wide by 0.060 in			
	thick snap-fit extruded aluminum cover			
GLASS RAILS (BOTTOM	1-1/8 in high by 2-5/16 in wide aluminum extrusion with 0.09 in			
AND INTERMEDIATE)	wall			
GLASS PANEL (IN-FILL)	7/16 in thick laminated glass constructed with two sheets of 3/16			
	in thick clear tempered glass and a 0.060 in interlayer			
SUPPORT POST	Two 2-1/2 in deep x 1/2 in wide aluminum extrusions with 9/16 in			
	gap between			
BASE PLATE	3-15/16 in deep by 4-3/8 in wide by 9/16 in / 7/16 in thick extruded			
	aluminum base plate with two 1/2 in diameter countersunk holes			
	for attachment to substructure and four 1/4 in diameter			
	countersunk holes for attachment of support post to base plate			

Fastening Schedule

l asterning Schedule	
CONNECTION	FASTENER
GLASS PANEL INFILL TO	The glass panels were channel glazed in the glass rails against a
GLASS RAILS	0.187 in backed co-extruded weatherstripping and kerf mounted
	rubber fin
TOP RAIL TO POST	Four 1/4 in x 2 in long Phillips flat head stainless steel screws
ATTACHMENT	through top rail into post screw chases (two per section)
GLASS RAIL TO POST	Two #8 x 1-1/2 in long Phillips flat head stainless steel screws at
ATTACHMENT	each end of rail
BASE PLATE TO POST	Four 1/4 in x 2 in long Phillips flat head stainless steel screws
	through base plate into post screw chases (two per section)
POST MOUNT TO	Two M10 x 50 mm long allen drive flat head socket cap bolts and
SUBSTRUCTURE	nylon lock nuts

Version: 02/09/18 Page 5 of 15 RT-R-AMER-Test-2846

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

SECTION 9

TEST RESULTS

Test No. 1 - 05/15/18

DESIGN LOAD: 200 lb Concentrated Load at End of Top Rail (Bracket/Post)

Design Lovid. 200 is contentrated 2000 at 110 or 10p hair (Statice) 1000						
LOAD LEVEL	TEST LOAD	E.T.	RAIL END/POST			
LOAD LEVEL	(lb)	(min:sec)	DISPLACEMENT (in)			
Initial Load	38	00:00	0.00			
2.0x Design Load	399	00:29	4.60			
Initial Load	40	02:21	1.39			
70% Recovery from 2.0 x Design Load						
2.5x Design Load	501	03:10	Achieved Load without Failure			

Test No. 2 - 05/15/18

DESIGN LOAD: 200 lb Horizontal Concentrated Load at Midspan of Top Rail

LOAD LEVEL	TEST LOAD	E.T.	RAIL DISPLACEMENT (in)			
LOAD LEVEL	(Ib)	(min:sec)	END	MID	END	NET 1
Initial Load	39	00:00	0.00	0.00	0.00	0.00
2.0x Design Load	400	00:21	3.19	3.66	3.91	0.11
Initial Load	40	02:39	1.37	1.29	1.26	<0.00
>100% Recovery from 2.0 x Design Load						
2.5x Design Load	502	03:07	Achieved Load without Failure			

¹ Net displacement was mid-rail displacement relative to the rail at the support posts.

TEST NO. 3 - 05/15/18

DESIGN LOAD: 50 lb / 1 square ft at Center of In-fill

LOAD LEVEL	TEST LOAD	E.T.	DISPLACE	MENT (in)		
LOAD LEVEL	(lb)	(min:sec)	END	MID	END	NET ¹
Initial Load	10	00:00	0.00	0.00	0.00	0.00
2.0x Design Load	102	00:13	0.14	0.12	0.02	0.04
Initial Load	10	02:16	0.00	0.00	0.00	0.00
100% Recovery from 2.0 x Design Load						
4.0x Design Load	203	02:29	Achieved Load without Failure			

¹ Net displacement was the infill displacement relative to its top and bottom.

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

TEST NO. 4 - 05/15/18

DESIGN LOAD: 50 lb / 1 square ft at Bottom of In-fill

LOAD LEVEL	TEST LOAD	E.T.	DISPLACEMENT (in)			
LOAD LEVEL	(lb)	(min:sec)	END	MID	END	NET 1
Initial Load	10	00:00	0.00	0.00	0.00	0.00
2.0x Design Load	121	02:11	0.00	0.04	0.00	0.04
Initial Load	10	04:19	0.00	0.01	0.00	0.01
75% Recovery from 2.0 x Design Load						
4.0x Design Load	202	04:30	Achieved	Load with	out Failure	

¹ Net displacement was the bottom rail displacement relative to its ends.

Test No. 5 - 05/15/18

DESIGN LOAD: 200 lb Vertical Concentrated Load at Midspan of Top Rail

LOAD LEVEL	TEST LOAD (lb)	E.T. (min:sec)	RAIL DISPLACEMENT (in)
Initial Load	44	00:00	0.00
2.0x Design Load	410	00:13	0.46
Initial Load	40	01:52	0.02
96% Recovery from 2	2.0 x Design Load		
2.5x Design Load	505	02:12	Achieved Load without Failure

Test No. 6 - 05/15/18

DESIGN LOAD: 50 plf x (47 in \div 12in/ft) = 196 lb Vertical Uniform Load Top Rail ¹

LOAD LEVEL	TEST LOAD (lb)	E.T. (min:sec)	RAIL DISPLACEMENT (in)		
Initial Load	40	00:00	0.00		
2.0x Design Load	394	00:18	0.34		
Initial Load	41	02:24	0.00		
100% Recovery from 2.0 x Design Load					
2.5x Design Load	527	02:38	Achieved Load without Failure		

¹ Uniform load was simulated with quarter point loading.

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

Test No. 7 - 05/15/18

DESIGN LOAD: 50 plf x (47 in ÷ 12in/ft) = 196 lb Horizontal Uniform Load Top Rail 1

LOAD LEVEL	TEST LOAD	E.T.	RAIL DISPLACEMENT (in)			
LOAD LEVEL	(lb)	(min:sec)	END	MID	END	NET ¹
Initial Load	42	00:00	0.00	0.00	0.00	0.00
2.0x Design Load	392	00:16	2.23	2.28	2.20	0.07
Initial Load	42	02:27	0.51	0.53	0.53	0.01
86% Recovery from 2.0 x Design Load						
2.5x Design Load	493	02:50	Achieve	d Load w	ithout Fai	lure

¹ Uniform load was simulated with quarter point loading.

TEST NO. 8 - 05/16/18

DESIGN LOAD: 50 lb / 1 square ft at Edge of In-fill

LOAD LEVEL	TEST LOAD	E.T.	DISPLACEMENT (in)			
LOAD LEVEL	(Ib)	(min:sec)	END	MID	END	NET ¹
Initial Load	11	00:00	0.00	0.00	0.00	0.00
2.0x Design Load	109	00:09	0.61	0.33	0.06	<0.00
Initial Load	11	02:13	0.01	0.00	0.00	<0.00
100% Recovery from 2.0 x Design Load						
4.0x Design Load	200	02:41	Achieved Load without Failure			<u> </u>

¹ Net displacement was the infill displacement relative to its top and bottom.

SECTION 10

CONCLUSION

Using performance criteria of withstanding an ultimate load of 2.5 (4.0 for glass infill) times design load, the test results substantiate compliance with the design load requirements of the referenced building codes for the 46 in wide (nominal) by 47 in high (nominal) railing assembly (*Synthesis Type B1*) reported herein. Anchorage of support posts to the supporting structure is not included in the scope of this testing and would need to be evaluated separately.

Version: 02/09/18 Page 8 of 15 RT-R-AMER-Test-2846

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

SECTION 11

PHOTOGRAPHS

Photo No. 1
Concentrated Load Test at End of Top Rail (Bracket/Post)

Photo No. 2
Horizontal Concentrated Load at Midspan of Top Rail

Version: 02/09/18 Page 9 of 15 RT-R-AMER-Test-2846

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

Photo No. 3
Infill Test at Bottom

Photo No. 4
Vertical Concentrated Load Test at Midspan of Top Rail

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

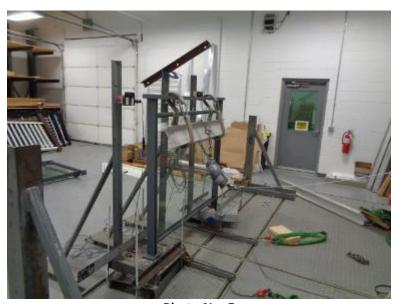


Photo No. 5
Horizontal Uniform Load Test on Top Rail

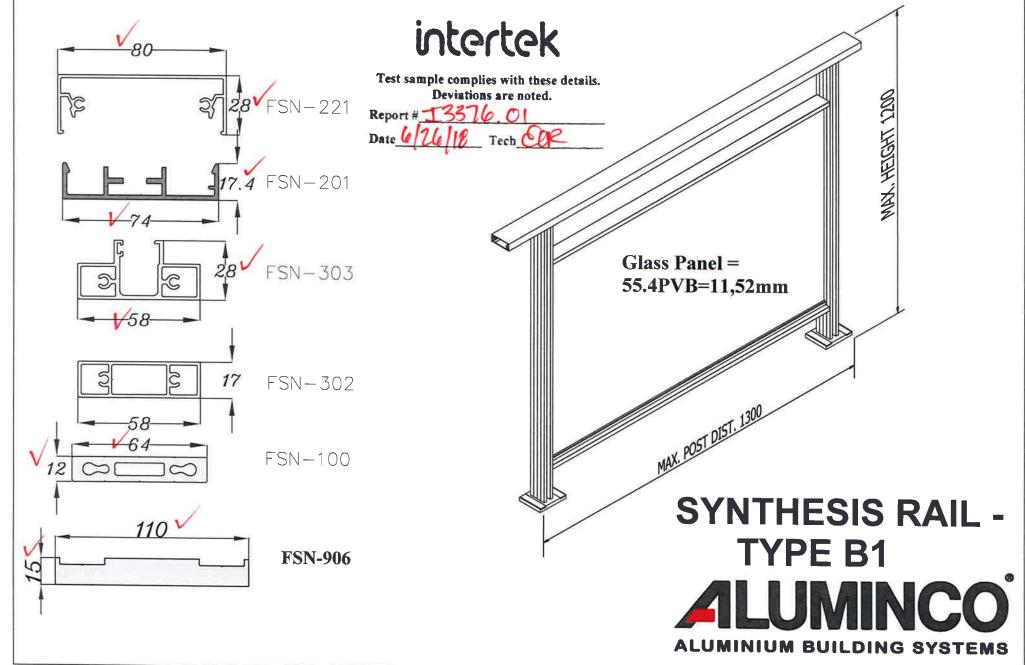
Photo No. 6
Infill Load Test at Edge

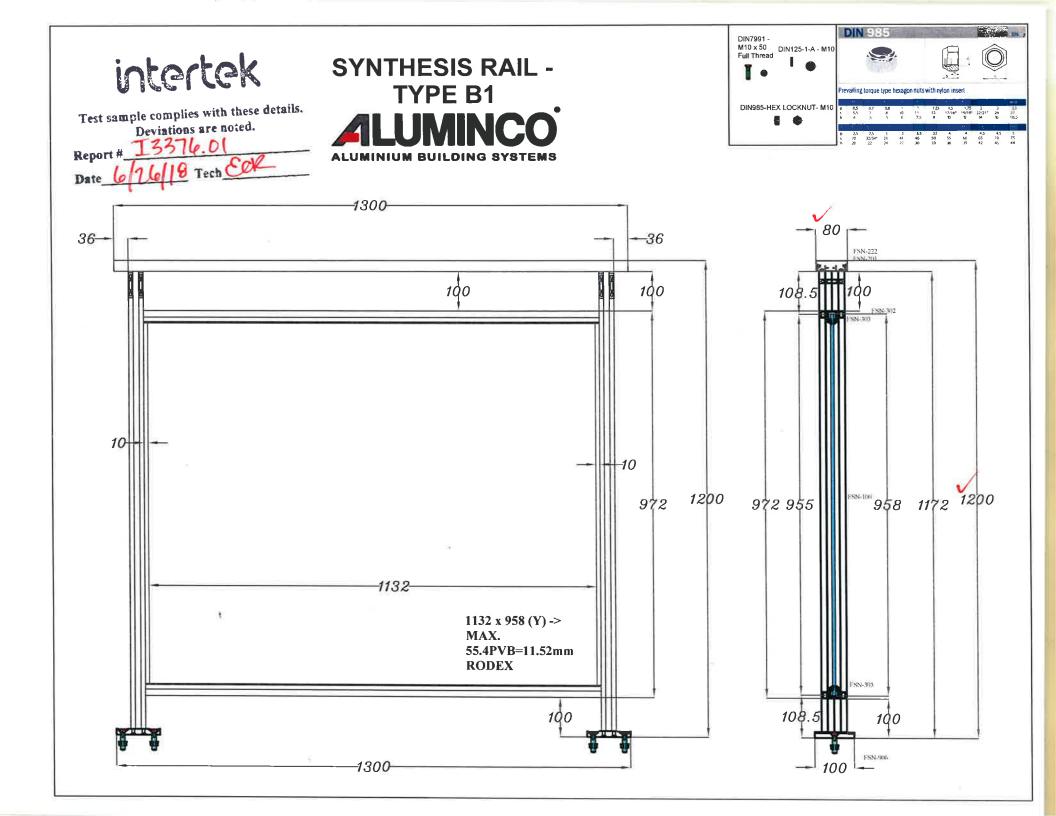
Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18


SECTION 12


DRAWINGS

The "As-Built" drawings for the *Synthesis Type B1* guardrail system which follow have been reviewed by Intertek B&C and are representative of the project reported herein. Project construction was verified by Intertek B&C per the drawings included in this report. Any deviations are documented herein or on the drawings.

Version: 02/09/18 Page 12 of 15 RT-R-AMER-Test-2846

GLASS + intermediate rail

Telephone: 717-764-7700 Facsimile: 717-764-4129 www.intertek.com/building

TEST REPORT FOR ALUMINCO S.A.

Report No.: I3376.01-119-19 RO

Date: 06/26/18

SECTION 13

REVISION LOG

REVISION #	DATE	PAGES	REVISION
0	06/26/18	N/A	Original Report Issue